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General stability criterion for wetting
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~Received 16 November 2002; published 11 July 2003!

We propose a general stability criterion for the wetting of solid substrates, both arbitrarily curved and
inhomogeneous. In addition to the classical surface tension, the adhering drops can also exhibit a tension along
the contact line where three phases meet, namely, the solid, the liquid, and the environment fluid. Moreover, we
show how some stability issues currently debated in the specialized literature of disparate fields could profit
from the application of this general criterion.
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In its long history, the theory of capillarity has posed
wealth of mathematical problems@1#, interest in which has
possibly been revived by the emergence of wetting phen
ena calling for a theoretical explanation. These phenom
include, but are not limited to, the effect of both mater
inhomogeneities and geometric microstructures of a s
substrate supporting a liquid drop~see, for example,@2,3#!.
They can also involve drops so small that a tension along
contact line plays a role in the free energy. The line tens
of a drop can be viewed as Gibbs excess energy assoc
with the three phases in contact, namely, the solid, the liq
and the environment fluid. As shown recently by Swain a
Lipowsky @4#, this tension alters the classical Young formu
for the equilibrium condition along the contact line and a
makes the contact angle depend on the differential prope
of the substrate. For a given wetting liquid, the line tension
a constitutive property of the substrate and the surround
environment; it notably depends on the temperature. Ac
rate measurements@5–7# have recently shown that awa
from the wetting transition the line tension ranges betwe
10211 and 10210 N and can be either positive or negative

In this paper, we consider a general free-energy functio
for a liquid drop in contact with a rigid substrate. The liqu
is regarded as incompressible and is subject to a bulk po
tial; the substrate is taken to be an arbitrarily curved surf
endowed with an adhesion potential varying from point
point, so as to represent both geometric microstructures
material inhomogeneities. Also a tension dependent on
position can act along the contact line. For this general
ergy functional we write the second variation in an intrins
form, that is, with no resort to any specific representation
either the free surface of the drop or the substrate suppo
it. When both the adhesion potential and the line tension
constant, the formula for the second variation becomes
prisingly simple. As is customary, the stability analysis of t
equilibrium configurations for the drop is then reduced to
eigenvalue problem, which needs to be solved for spec
equilibrium configurations. Here we mainly illuminate th
role played by the contact line in a whole class of stabi
problems. That this is indeed a crucial role can easily
understood by the classical theorem in the theory of minim
surfaces, saying that the area functional is locally sta
against perturbations confined to a sufficiently small reg
of the equilibrium surface@8#: all possible destabilizing
causes thus arise from the border. A vast literature is dev
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to these destabilizing effects; they are presumably hidde
most static dewetting mechanisms, but to our knowled
complete stability analyses have been confined either to
inhomogeneous substrates@9,10# or to special classes o
curved substrates@11–13#.

Below we first recall the mathematical preliminarie
needed to make our general stability condition accessibl
the nonspecialist. We then state our main conclusion,
scribing briefly the method employed to arrive at it. Th
paper closes with a list of open stability problems to whi
our analysis would be directly applicable.

Let S be a smooth orientable surface in the thre
dimensional space with a border on a smooth closed curvC
~see Fig. 1!. An orientation is assigned toS by prescribing
the unit normaln; the outer conormalnS is defined onC as
the outward unit vector tangent toS and orthogonal toC; the
border is further oriented so that its unit tangent istªnS
3n. The trihedron (t,nS ,n) thus defined alongC is called the
Darboux trihedron~see@14#, p. 261!. Let s be the arclength
of C oriented liket. The Darboux trihedron rotates alongC
with angular velocity ~see @15#, p. 117! v52tgt2knnS
1kgn, wheretg , kn , andkg , defined at every point ofC by

tgª
dn

ds
•nS , knª

dt

ds
•n, kgª

dt

ds
•nS , ~1!

are the geodesic torsion and the normal and geodesic cu
tures ofC relative toS.

We consider now a liquid drop of a prescribed volum
deposited on a curved, adhesive substrate.B is the region in
space occupied by the drop and]B is its whole boundary,

FIG. 1. A smooth surfaceS and its borderC: (t,nS ,n) is the
Darboux trihedron.
©2003 The American Physical Society01-1
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which is composed of thefreesurfaceS, where the drop is in
contact with the environment fluid, and theadheringsurface
S* , where the drop is in contact with the substrate. T
common border ofS andS* is thecontact lineC of the drop,
where three distinct phases meet~see Fig. 2!. The free-
energy functionalF of the drop is

F@B#5E
B
f dv1E

S
gda1E

S
*

~g2w!da1E
C
tds, ~2!

where f is a bulk potential depending on the position
space,g is the constant surface tension at the free surfacew
is the adhesion potential of the substrate, andt is the tension
along the contact line. In Eq.~2!, the interfacial energy on
the substrate is conventionally written asg2w, implying
that w.0 for an adhesive substrate. Here bothw andt are
taken as functions of the position on the substrate to desc
constitutive material inhomogeneities. When bothw and t
are constant, arbitrary geometric microstructures are
possible in the substrate.

The functionalF is subject to the constraint on the vo
ume of B and to the condition thatS* be part of the sub-
strate. All admissible variations ofF must preserve the dro
volume and ensure thatS* glides on the substrate. In par
ticular, a correct stability analysis relies on enforcing bo
these requirements up to the second order. Formally, we
turb the shapeB of the drop by mapping every pointp into

p«5p1«u1«2v, ~3!

where« is a perturbation parameter, andu andv are smooth
vector fields describing the first- and second-order variati
of B, respectively. Both constraints are satisfied to the fi
order in«, wheneveru obeys

E
S
unda50, ~4!

u•n* 50 onS* , ~5!

where unªu•n and n* is the unit normal ofS* oriented
outward toB. Likewise, both constraints are satisfied to t
second order in« wheneverv obeys

E
S
~undivsu2u•~“su!

T
n12v•n!da50, ~6!

FIG. 2. Sketch of a drop deposited on a curved solid substr
The boundary of the drop is composed of thefreesurfaceS and the
adheringsurfaceS* . The contact lineC is the common border ofS
andS* .
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v•n* 52
1

2
u•~“sn* !u onS* , ~7!

where“s denotes the surface gradient.
By requiring F to be stationary with respect to all firs

order variations ofB, one arrives at the following equilib
rium equations for the drop:

gH1 f 5Dp onS, ~8!

g cosqc1g2w1“st•nS
*
2tkg* 50 alongC. ~9!

In Eq. ~8!, H is the total curvature ofS, and Dp is the
Lagrange multiplier associated with the constraint on
volume and representing the pressure difference across
liquid-fluid interface. To make precise the sign conventi
adopted forH, we note that

“sn5s1e1^ e11s2e2^ e2 , ~10!

wheree1 ande2 are tangent unit vectors along the princip
directions ofS and s1 ,s2 are the corresponding principa
curvatures. Here the total curvature ofS is Hªdivsn5s1
1s2, while the Gaussian curvature ofS, soon to be em-
ployed, is Kªs1s2. In Eq. ~9!, qc denotes thecontact
angle, that is, the angle made on the contact lineC by the two
conormal vectorsnS andnS

*
, one relative toS and the other

relative toS* ; finally, kg* is the geodesic curvature ofC on
S* . Sinceg is constant, Eq.~8! also prescribesH to be a
constant whenf 50. Equation~8! is the classical Laplace
equation, while Eq.~9!, which in this form is due to Swain
and Lipowsky @4#, is a much newer generalization of th
Young formula.

By Eqs. ~4!–~9!, the second variationd2F of F on an
equilibrium configuration of the drop can be given the fo
lowing form:

d2F5gE
S
$u“sunu21~2K2H21]n f !un

2%da2gE
C
S H*

sinqc

1cotqcH1kgDun
2ds1E

C
~t~us8!22$t@K* 1~kg* !2#

1“sw•nS
*
2~“s

2t!nS
*
•nS

*
1kg*“st•nS

*
%us

2!ds.

~11!

In Eq. ~11!, un andus are related onC through

un5sinqcus . ~12!

Moreover,]n fª“ f •n is the normal derivative off onS, H*
andK* are the total and Gaussian curvatures ofS* , and a
prime denotes differentiation with respect to the arclengts
on C. Clearly, whenw is constant andt vanishes on the
substrate, the second line integral in Eq.~11! vanishes and
d2F acquires a much simpler form. In general, it is a rema
able feature of Eq.~11! that it depends only on the norma
component ofu on S, while bothu andv have nonvanishing
tangential components.

e.
1-2
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A general stability criterion stems naturally from Eq.~11!:
an equilibrium configuration for the drop is stable whene
d2F.0 for all fields un on S that satisfy Eq.~4!. As is
customary~see, for example,@16#, p. 398!, sinced2F is a
quadratic functional, this criterion reduces to an eigenva
problem. We abbreviated2F asgF with

F@un#ªE
S
$u“sunu21aun

2%da1E
C
$j~us8!22bus

2%ds,

~13!

wherejªt/g anda andb, which are immediately read of
from Eq.~11!, depend only on the given equilibrium shape
the drop. Seeking the fieldsun that makeF stationary subject
to Eq. ~4! and to

E
S
un

2da51, ~14!

by resort to Eq.~12! we conclude that the equilibrium shap
of the drop is stable whenever there are only positive val
of m for which the following equations inun :

Dsun1~m2a!un1l50 onS, ~15!

sin2qc“sun•nS2sinqcS jS un

sinqc
D 8D 8

2bun50 alongC
~16!

have a solution obeying both Eqs.~4! and ~14!. In Eq. ~15!,
l and m are the Lagrange multipliers corresponding to t
constraints in Eqs.~4! and ~14!, andDs denotes the surfac
Laplacian.

Arriving at Eq. ~11! is much more involved than on
might expect from glancing at its harmless form. We sh
elsewhere@17# the details and the subtleties of this deriv
tion; here we only record for the ease of the interested rea
the basic tools that proved useful in several crucial points
the proof. We extensively employed the surface-diverge
theorem~see, for example,@18#, p. 87!, which states that a
smooth vector fieldu defined on the surfaceS satisfies the
equation

E
S
divsuda5E

S
Hunda1E

C
u•nS ds. ~17!

Moreover, whenS is sufficiently smooth the normal fieldn
obeys@19#

Dsn5“sH1~2K2H2!n. ~18!

Finally, regardingC at the same time as a curve onS and as
a curve onS* , the geodesic and normal curvatures and
geodesic torsions relative to the two surfaces can be rel
as follows@17#:

kg5kg* cosqc1kn* sinqc , ~19!

kn5kg* sinqc2kn* cosqc , ~20!
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There are several problems arising in disparate fields
in our opinion would profit from the stability criterion show
in this paper. First, we briefly describe one such problem,
which our criterion already provides a definite answer. Th
we quote a few more, for which the quest for a stabil
condition is still open in the specialized literature.

Line tension. Experiments with very small liquid drops
say, in the submicrometer range, have recently become c
mon @5–7,21–23#. They support the theoretical prediction
of an excess energy residing along the contact line~see, for
example,@24,25#, and @21#, p. 174!. Measurements of both
positive and negative line tensions have been reported in
literature, fostering some theoretical debate. In particula
qualitative argument has been put forward@26#, which is not
unanimously accepted@27#, suggesting that the line tensio
must be positive for the stability of the drop. The possibil
for the energy of selected fluctuations to be negative w
the line tension is negative was similarly indicated in@28#.
This conclusion essentially follows by arguing that fort
,0 the line integral in Eq.~2! would makeF unbounded
from below for very wiggly linesC whose length prevails
over the area of both surfacesS and S* . This is clearly
conceivable only in the limit as the typical curvature 1/d of C
tends to infinity. In this limit, however, the mesoscop
model where the drop’s free energy is described by the fu
tional F in Eq. ~2! fails to be valid. Thus, whent,0, it
becomes relevant to the stability of the drop to estim
within our model the minimum lengthd over all possible
stable modes. This was achieved with the aid of our stab
criterion for cylindrical liquid bridges lying on a flat sub
strate@17#. In particular, we studied the case wheret is con-
stant, f 50, andg5w, so thatqc5p/2 and the bridge is a
semicylinder of radiusR. We concluded that fort50 all
stable bridges have lengthL,2pR and every bridge with
length L>2pR is unstable: this is precisely the classic
Rayleigh instability for a cylindrical liquid column, as whe
t50 the energy of the semicylindrical bridge is precise
half the energy of the full column. Whent.0, the line
tension has a stabilizing effect, as the critical lengthLc above
which the bridges become unstable exceeds 2pR. Precisely,
whenAjR!L, we estimatedLc'2pR12ApjR. Likewise,
whent,0 the minimal lengthd over which the contact line
C can be distorted, while leaving the second variationd2F
positive, is comparable toAujuR. This is a mesoscopic
length, intermediate betweenuju and R. Thus, whent is
negative also, semicylindrical bridges on a flat substrate
locally stable within our mesoscopic model.

Microscopic models like the one in@25# are more appro-
priate at shorter length scales. A kind of stability analy
within the model of@25# was performed in@29#: the func-
tional whose minimum is interpreted as the line tension
the drop was found to be locally stable, irrespective of
sign of the line tension itself. To our knowledge, virtually a
microscopic models, including the more refined ones@30,31#
where the interface interactions are taken to be nonlo
consider the drop as infinite and the contact line as strai
1-3
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A possible exception is the model proposed in@32#, where
the drop is a spherical segment and the contact line
circle: there, however, the consequences of making both
surface and line tensions also depend on the curvature
both the interface and the contact line are not explored
our opinion, this avenue might lead to an improved var
tional model applicable down to length scales shorter t
AujuR, with 1/R generally a characteristic curvature of th
drop.

Lotus effect. The leaves of some plants, an example
which is the lotus, exhibit a fine geometric microstructu
that makes them repel virtually any liquid@33#. Several hy-
potheses have been put forward to explain this phenome
@34,35#. A complete stability analysis would be eased by t
criterion proposed here.

Fiber wetting. Coated fibers occur in many application
Intuitively, the wetting mechanism that produces the
should be affected by the instability of droplets trying to
on the fiber. Recently, the need for a general stability cr
rion has clearly been felt in this field@36#. Indeed, Carroll
@37# worked out an explicit metastability condition fo
barrel-like drops that has been further improved in some
l-
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s
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merical explorations@12,13#. However, the outcomes o
these studies cannot be applied to the more general m
ematical models envisaged in@20#. It appears that these mod
els fall within the range of validity of our criterion.

In conclusion, we arrived at a general stability criterio
for the wetting of solid substrates: it applies to curved, inh
mogeneous substrates bearing liquid drops with both sur
and line tensions. We employed this criterion to decide
stability of liquid bridges with line tension. We also liste
apparently disparate physical problems that could be so
by applying this general criterion. We plan to attack some
them in the near future.
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