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General stability criterion for wetting
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We propose a general stability criterion for the wetting of solid substrates, both arbitrarily curved and
inhomogeneous. In addition to the classical surface tension, the adhering drops can also exhibit a tension along
the contact line where three phases meet, namely, the solid, the liquid, and the environment fluid. Moreover, we
show how some stability issues currently debated in the specialized literature of disparate fields could profit
from the application of this general criterion.
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In its long history, the theory of capillarity has posed ato these destabilizing effects; they are presumably hidden in
wealth of mathematical probleni4], interest in which has most static dewetting mechanisms, but to our knowledge
possibly been revived by the emergence of wetting phenomeomplete stability analyses have been confined either to flat,
ena calling for a theoretical explanation. These phenomené@homogeneous substrat¢8,10] or to special classes of
include, but are not limited to, the effect of both material curved substratefl1-13.
inhomogeneities and geometric microstructures of a solid Below we first recall the mathematical preliminaries
substrate supporting a liquid drdpee, for exampld,2,3]). needed to make our general stability condition accessible to
They can also involve drops so small that a tension along théhe nonspecialist. We then state our main conclusion, de-
contact line plays a role in the free energy. The line tensiorscribing briefly the method employed to arrive at it. The
of a drop can be viewed as Gibbs excess energy associate@per closes with a list of open stability problems to which
with the three phases in contact, namely, the solid, the liquidour analysis would be directly applicable.
and the environment fluid. As shown recently by Swain and Let & be a smooth orientable surface in the three-
Lipowsky [4], this tension alters the classical Young formula dimensional space with a border on a smooth closed aCirve
for the equilibrium condition along the contact line and also(see Fig. 1 An orientation is assigned t§ by prescribing
makes the contact angle depend on the differential propertig§e unit normalv; the outer conormab; is defined orC as
of the substrate. For a given wetting liquid, the line tension ighe outward unit vector tangent and orthogonal t@; the
a constitutive property of the substrate and the surroundingorder is further oriented so that its unit tangentt:isys
environment; it notably depends on the temperature. AccuX ». The trihedron {,vs,») thus defined along is called the
rate measurements—7] have recently shown that away Darboux trihedror(see[14], p. 261. Let s be the arclength
from the wetting transition the line tension ranges betweerof C oriented liket. The Darboux trihedron rotates alowg
10 ' and 10 *° N and can be either positive or negative. Wwith angular velocity (see[15], p. 117 = — 74t— ks

In this paper, we consider a general free-energy functionat «4v, wherery, «,, andky, defined at every point af by
for a liquid drop in contact with a rigid substrate. The liquid
is regarded as incompressible and is subject to a bulk poten- dv dt dt
tial; the substrate is taken to be an arbitrarily curved surface Tg'Tqs VSt KnTgg P Kot Vs @)
endowed with an adhesion potential varying from point to
point, so as to represent both geometric microstructures arate the geodesic torsion and the normal and geodesic curva-
material inhomogeneities. Also a tension dependent on thaires of(C relative toS.
position can act along the contact line. For this general en- We consider now a liquid drop of a prescribed volume
ergy functional we write the second variation in an intrinsicdeposited on a curved, adhesive substrtes the region in
form, that is, with no resort to any specific representation okpace occupied by the drop aad is its whole boundary,
either the free surface of the drop or the substrate supporting
it. When both the adhesion potential and the line tension are
constant, the formula for the second variation becomes sur
prisingly simple. As is customary, the stability analysis of the
equilibrium configurations for the drop is then reduced to an
eigenvalue problem, which needs to be solved for specific
equilibrium configurations. Here we mainly illuminate the
role played by the contact line in a whole class of stability
problems. That this is indeed a crucial role can easily be
understood by the classical theorem in the theory of minimal
surfaces, saying that the area functional is locally stable
against perturbations confined to a sufficiently small region
of the equilibrium surfacd8]: all possible destabilizing FIG. 1. A smooth surface and its bordetC: (t,vs,v) is the
causes thus arise from the border. A vast literature is devotedarboux trihedron.
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1
v-V*=—§uo(VSv*)u ons, , (7

whereV ¢ denotes the surface gradient.

By requiring F to be stationary with respect to all first-
order variations of3, one arrives at the following equilib-
rium equations for the drop:

yH+f=Ap onS§, 8
FIG. 2. Sketch of a drop deposited on a curved solid substrate.
The boundary of the drop is composed of flee surfaceS and the ycosde+y—W+ Ve vg — TK; =0 alongC. (9
adheringsurfacesS, . The contact lin€ is the common border of *
andS, .

In Eqg. (8), H is the total curvature ofS, and Ap is the
Lagrange multiplier associated with the constraint on the

which is c_orr]nr;]osed (.)f th‘ifeesuﬂrfggas, \é\/h:éﬁ th_e dropfis in volume and representing the pressure difference across the
contact with the enqunment uid, an taeheringsuriace liquid-fluid interface. To make precise the sign convention
S, , where the drop is in contact with the substrate. The

_ ) adopted forH, we note that
common border of andS, is thecontact lineC of the drop, .
where three' distinct phases me(sr—:e Fig. 2 The free- V=006 +0,6,06, (10)
energy functionalF of the drop is
wheree; ande, are tangent unit vectors along the principal
_ directions ofS and 04,0, are the corresponding principal
Bl= fd+J’ da+J —wda+J ds, (2 "2 ; 3
1Bl J'B v 37 s*(y ) CT @ curvatures. Here the total curvature 8fis H:=divey= 0
+0,, while the Gaussian curvature & soon to be em-
where f is a bulk potential depending on the position in ployed, is K:=oy0,. In Eq. (9), ¥, denotes thecontact
space,y is the constant surface tension at the free surface, angle that is, the angle made on the contact liney the two
is the adhesion potential of the substrate, arnslthe tension  conormal vectors:s andws , one relative taS and the other
along the contact line. In Ed2), the interfacial energy on relative toS, ; finally, K; is the geodesic curvature Gfon

the substrate is conventionally written &s-w, implying S. . Si : :
. . - Sincey is constant, Eq(8) also prescribe# to be a
thatw>0 for an adhesive substrate. Here buttand 7 are .0 -+ wherf=0. Equation(8) is the classical Laplace

taken as functions of the position on the substrate to describ . X Lo ) ;
constitutive material inhomogeneities. When bethand 7 c?quatlon, while Eq(9), which in this form is due to Swain

) - ; .and Lipowsky[4], is a much newer generalization of the
are constant, arbitrary geometric microstructures are stil n yl4] 9

ible in th bstrat oung formula.
pOSTSr:e ?uerctitfnesllLJ]?Sisrasjbject to the constraint on the vol- By Egs. (499), the second variatio” of F on an
ume of B and to the condition thas, be part of the sub- equilibrium configuration of the drop can be given the fol-

strate. All admissible variations ¢f must preserve the drop lowing form:
volume and ensure tha, glideson the substrate. In par-

ticular, a correct stability analysis relies on enforcing both 6°F= yf {IVqu,|?+(2K—H2+4,f)u’da— yf (
these requirements up to the second order. Formally, we per- s ¢
turb the shapés of the drop by mapping every poiptinto

*

sind,

+cotdcH+ kg u’ds+ f (r(ul)®—{rK* + (kg )?]
p.=p+eute’v, &) c
wheree is a perturbation parameter, ancindv are smooth +VWews —(Vin)vs -vs +x5Vervs tud)ds.
vector fields describing the first- and second-order variations (11)
of B, respectively. Both constraints are satisfied to the first
order ine, whenever obeys In Eq. (12), u, andu are related or through
f u,da=0, 4) u,=sin9.Us. (12
S
Moreover,d,f:=V f-wis the normal derivative dfon S, H*
u-r,=0 onsS,, (5 andK* are the total and Gaussian curvaturesSgf, and a

. . _ prime denotes differentiation with respect to the arclergth
whereu,:=u-» and », is the unit normal ofS, oriented on C. Clearly, whenw is constant andr vanishes on the
outward toj3. Likewise, both constraints are satisfied to thesubstrate, the second line integral in Efjl) vanishes and

second order iz whenever obeys 5% F acquires a much simpler form. In general, it is a remark-
able feature of Eq(11) that it depends only on the normal
f (u,divu—u- (VSU)TV+ 2v-v)da=0, (6) component ofi on S, while bothu andv have nonvanishing
S tangential components.
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A general stability criterion stems naturally from Ed1): V=14 75 . (22)
an equilibrium configuration for the drop is stable whenever
8°F>0 for all fields u, on S that satisfy Eq.(4). As is

customary(see, for example[16], p. 399, since 6°F is a There are several problems arising in disparate fields that
quadratic functional, this criterion reduces to an eigenvaluén our opinion would profit from the stability criterion shown
problem. We abbreviaté®F as yF with in this paper. First, we briefly describe one such problem, for

which our criterion already provides a definite answer. Then
2 , 2 we quote a few more, for which the quest for a stability
Flu,]:= JS{|VSuV|2+ austda+ L{g(us)z—ﬂus}d& condition is still open in the specialized literature.
(13) Line tension Experiments with very small liquid drops,

say, in the submicrometer range, have recently become com-
whereé:=7/y anda and B, which are immediately read off mon [5-7,21-23 They support the theoretical predictions
from Eq.(11), depend only on the given equilibrium shape of of an excess energy residing along the contact (g, for
the drop. Seeking the fields, that makeF stationary subject example,[24,25, and[21], p. 174. Measurements of both
to Eq.(4) and to positive and negative line tensions have been reported in the
literature, fostering some theoretical debate. In particular, a
gualitative argument has been put forwd2@é], which is not
unanimously acceptel®7], suggesting that the line tension
must be positive for the stability of the drop. The possibility
by resort to Eq(12) we conclude that the equilibrium shape for the energy of selected fluctuations to be negative when
of the drop is stable whenever there are only positive valuethe line tension is negative was similarly indicated 28].

f u’da=1, (14)
S

of u for which the following equations in,, : This conclusion essentially follows by arguing that fer
<0 the line integral in Eq(2) would makeZ unbounded
AU, +(p—a)u,+A=0 onS, (15  from below for very wiggly linesC whose length prevails

over the area of both surfaceésand S, . This is clearly
. ) AN conceivable only in the limit as the typical curvature of C
S|n21‘}CVSuV-v5—S|m‘}C(§(m> ) —pu,=0 alongC tends to infinity. In this limit, however, the mesoscopic
¢ (16) model where the drop’s free energy is described by the func-
tional F in Eq. (2) fails to be valid. Thus, whenr<Q0, it
have a solution obeying both Eqgl) and(14). In Eq. (15), becomes relevant to the stability of the drop to estimate
N\ and u are the Lagrange multipliers corresponding to thewithin our model the minimum lengtld over all possible
constraints in Eqs(4) and (14), and A denotes the surface stable modes. This was achieved with the aid of our stability
Laplacian. criterion for cylindrical liquid bridges lying on a flat sub-
Arriving at Eq. (11) is much more involved than one strate[17]. In particular, we studied the case wherés con-
might expect from glancing at its harmless form. We showstant,f=0, andy=w, so thatd.= m/2 and the bridge is a
elsewherd 17] the details and the subtleties of this deriva- semicylinder of radiusR. We concluded that for=0 all
tion; here we only record for the ease of the interested readestable bridges have length<2#7R and every bridge with
the basic tools that proved useful in several crucial points ofength L=2#R is unstable: this is precisely the classical
the proof. We extensively employed the surface-divergenc®ayleigh instability for a cylindrical liquid column, as when
theorem(see, for exampld,18], p. 87, which states that a =0 the energy of the semicylindrical bridge is precisely
smooth vector fieldi defined on the surfac§ satisfies the half the energy of the full column. When>0, the line
equation tension has a stabilizing effect, as the critical lergtlabove
which the bridges become unstable exceedf2Precisely,
fdivsuda:f Huvda+fu.,,sds_ (17) when ER<L, we estimated. ;~2mR+2ym¢R. Likewise,
S S c when 7<0 the minimal lengttd over which the contact line
C can be distorted, while leaving the second variatiStF
Moreover, whenS is sufficiently smooth the normal field  positive, is comparable to/|¢|R. This is a mesoscopic
obeys[19] length, intermediate betweeld| and R. Thus, whenr is
negative also, semicylindrical bridges on a flat substrate are
Agp=VH+(2K-H?)w. (18)  ocally stable within our mesoscopic model.

) , . Microscopic models like the one ir25] are more appro-
Finally, regarding’ at the same time as a curve 6rand as  piate at shorter length scales. A kind of stability analysis
a curve onS, , the geodesic and normal curvatures and theyithin the model of[25] was performed if29]: the func-
geodesic torsions relative to the two surfaces can be relatggh,a1 whose minimum is interpreted as the line tension of
as follows[17]: the drop was found to be locally stable, irrespective of the
sign of the line tension itself. To our knowledge, virtually all

I * i
Kg= Kg COSTc+ Ky SINdc, (19 microscopic models, including the more refined of8gs31]
. . where the interface interactions are taken to be nonlocal,
Kn= KgSiN¥¢— Kk, COST, (200 consider the drop as infinite and the contact line as straight.
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A possible exception is the model proposed 32], where  merical explorations[12,13. However, the outcomes of
the drop is a spherical segment and the contact line is these studies cannot be applied to the more general math-
circle: there, however, the consequences of making both thematical models envisaged[ia0]. It appears that these mod-
surface and line tensions also depend on the curvatures efs fall within the range of validity of our criterion.
both the interface and the contact line are not explored. In |n conclusion, we arrived at a general stability criterion
our opinion, this avenue might lead to an improved varia-for the wetting of solid substrates: it applies to curved, inho-
tional model applicable down to length scales shorter thamogeneous substrates bearing liquid drops with both surface
V|€|IR, with 1/R generally a characteristic curvature of the and line tensions. We employed this criterion to decide the
drop. stability of liquid bridges with line tension. We also listed
Lotus effect The leaves of some plants, an example ofapparently disparate physical problems that could be solved
which is the lotus, exhibit a fine geometric microstructureby applying this general criterion. We plan to attack some of
that makes them repel virtually any liqui@3]. Several hy- them in the near future.
potheses have been put forward to explain this phenomenon
[34,35. A complete stability analysis would be eased by the
criterion proposed here. It is our pleasure to acknowledge the valuable criticism of
Fiber wetting Coated fibers occur in many applications. R. C. Ball and S. Luckhaus and the stimulating discussion
Intuitively, the wetting mechanism that produces themwith A. De Simone, J. Hinch, R. Lipowsky, and M. Warner at
should be affected by the instability of droplets trying to sit Castle Ringberg during the workshop Mathematical Aspects
on the fiber. Recently, the need for a general stability criteof Materials Science: Soft Matter, where our stability crite-
rion has clearly been felt in this fielB6]. Indeed, Carroll rion was first presented. We are also grateful to G. Durand
[37] worked out an explicit metastability condition for and G. Savardor their comments and to the Italian GNFM
barrel-like drops that has been further improved in some nu¢iINdAM) for financial support to R.R.
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